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Abstract
Nonuniform sarnpting of images is a useful technique in computer
graphics, because a properly designed pattern of samples can make
alisaing take the form of high-frequency random noise. In this
paper, the technique of nonuniform sampling is extended from two
dimensions to include the ex~a parameter dimensions of distribu-
tion ray tracing. A condition for optirnslity is suggested, and algo-
rithms for approximating optimal sampling are developed. The
technique is demonstrated at low sampling densities, so the charac-
teristics of aliasing noise are clearly visible. At superaarnpling rates,
this technique should move noise into frequencim above the
paasband of the pixel-reconstruction filter.

CR Categories and Subject Descriptions: 1.3.3 [ Computer
Graphics ]: Picmre/Irnage Generation 1.3.7 [ Computer Graphics
]: Three-Dimensinrtal Graphics and Realism

General Terms: Algorithms

Additional Keywords and Phrases: Antialiasing, Distribution Ray
Tracing, Nonrmifomr Sampling, Noise Perception

1. Introduction

In 1979, Whitted demonstrated that ray tracing could be used to
simulate a number of realistic shading effects [Whitted80], Unfor-
tunately, ray tracing has a special ditllcuky with aJiaaing, a problem
sometimes encountered when sampling signals. To focus on this
issue, Whitted’s sdgorithm can be cast into the form of a two-
dimensional sampling problem. At each point (x ,y) on the image
plane, a bnghmess sample is defiied by calculating the radiance of a
ray from the viewpoint through that point. Assuming the irnage-
phme coordinates range between zero and one, the image brighmess
is detlmed by the mapping:

~: [0,1]2 + radiance (1)

Any synthetic image might be deacnbed as (1), but the details of ray
tracing have special implications: the vrdues of f can only be
evaluated at a @nt, and it is virtually impossible to symbolically
intergrate or low-pass filter the function. In other words, the signat
can be sampled but generally cannot be prefiitered to avoid aliaaing.
An interesting approach to this problem is nonuniform sampling
which an yield aliaaing in the form of high-frequency random noise
[Dipp485, Cook86, Mitchel187].
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An elegant extension of Whitted’s algorithm is distribution ray
tracing (previously “distributed ray tracing”), introduced by Cook,
Porter and Carpenter [Cook84]. Their algorithm simulat~ motion
blur, shadow penumbras from ftite-area light sources, depth-of-
field effects, and glossy reflections from partially polished surfaces.
This is achieved by sarnptittg in an additional set of parameter
dimensions. For example, an object in motion will have a position
in the scene parametrized by the time t, and motion blurred pixels
can be calculated by averaging over many different samples of r.
Depth-of-field effects are associated with a finite aperture on the
camera sod are simulated by &flecting rays through different points
on the lens, parametrized by two more variables a ,b. Glcmy
reflection results from varying the direction of a surface normal, as
if the surface were made up of randomly distributed microscopic
facets parametenzed by an orientation e,$.

WitA these extra parameters, distribution ray tracing defines a
multidimensional brighmess function f’ (x, y; r, u, . ). A
sample of this function is evaluated by ~rforming a Whitted-style
ray tracing operation. However, first moving objects would be
transformed to their hxation at time r, a point light source is defined
by (u,v) representing a sample of the area light, the primary ray
from the camera is deflected through a final point from a position
(a,b) on the lens, ete. Grtee the scene is prepared for a given set of
parametervalues, a ray-tracing cakutation can be done. Assuming
-x,Y, ~d D - 2 parameters range from zero to one, we have the
brighmess mapping:

f’: [O,l]D + radiance (2)

The two-dimensional image is an integrationover the parameters
11

~(x,Y) = JJ ““”j~’(x, y;r, u, . )dtdu. (3)
00 0

Addhionstl integration or convolution (with a filter) may be done in
.x and y to define a bandlimited image function i(.r, y ) suitable for
atias-free digitization. The integration in (3) cannot be evahsated
analytically, but the process of distribution ray &acing estimates
f(-x,Y) by averagingmanysamplesper pixel. This prmxss can be
viewed as a Monte Carlo integration, or as a classical statistical
sampling probiem of estimating the mesrrrvalue off in a region of
the image plane, or it can be viewed as a sampling problem in the
signal processing sense. These viewpoints are not independent, and
all of them can & found with varying degrees of emphasis in
discussions of distribution ray tracing [Cook84, 1...ee85,Cook86,
Kajiya86, Shirley90]. “

The question investigated in this paper is how to extend the
tedrniques of normnifomr sampling, used in Wldtted-style ray
fraeing, to the multiple dimensions of distribution ray tracing. This
is not simply the problem of generating a Dimensional image
from samples of ~’, which might be a obvious extension of the
twodtmensional methods. We are still interested in the
characteristics of noise in a two-dimensionat image, and we expect
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the parameter dimensions r, u, v, ., 0 to play a qualitatively
different role than the image coordinates x, y.

2. fncompleta Block Sampling Designs

An importantproblem in distribution ray tracing k how to choose
samples effectively to produce the highest qur@ image with the
fewest rays. We might simpl choose samples randomly with a uni-

Xform disbibution in [0,1] . In sequential sampling, random
samples are made until we are statistically cotildent that the average
value has a low variance px%5, Kajiya86]. This procedure is
usually improved by stratified sampling, where the intem’al [0, 1] is
divided into N levels, dropping a random sample into each
subirrtenal. This spreads the samples out more evenly and often
results in a lower variance of the average.

In the twodimensiorral antisliaaing problem of whined-style ray
tracing, each pixel area [0,1]2 can be divided into N x N
subsquares for stratitkd sampling, This is more or less the same as
jittered sampling, a common approach to the antialiiing problem
~ippt%5, Cook86, Kajiya86, I%mter89]. However, this is not a
practical approach to srunpliig the parameter space of distribution
ray tracing because of the high number of dimensions. Stratifkation
of all D dimensions wordd result in ND blocks to be sampled. This
could easily be tens of thousands of samplw per pixel, many more
than would be reasonable or necessary. In practice, stratilcation has
been applied to distribution ray tracing, but with incomplete block
sampling designs thatdonot tldly populate the ND blocks.

Cook created incomplete bbxk deaigrts by subdividing the pixel
area into an N x N mesh of subsquares. ‘he time dirmmsion was
divided into N2 levels, and pairs of “area-like” parameters like (u,v)
and (a ,b) were subdividing into N x N m=hes. N2 samples are
then made which projected onto each subsquarc of the pixel once,
each level of time once, each subsquare of the (u ,v) dimension
once, etc. Thus only N2 of the possible ND blocks are occupied by
a sample. Little has been said about how these associations betweem
blocks should be chosen, but it is clear that linear correlation
between parameter values should be avoided [Cook86]. Linear
correlation would mean a tendemcy for samples to fall on
hyperplanes in [0,1] D which could cause aliasing. The visual
consequences of parameter correlation are objectionable and
conspicuous.

Shirley describes another incomplete block design called “N-rook”
sampling, where N out of ND blocks are populated [Shirley90]. Let
rrI, nz,..rtD.l b~u~tiomoftiesqwne(o,l, . . . ,N - 1).
Then we choose one asmple in each aubmterval of each parameter
dimension. The nh sample is placed in level n of the x dimension,
in level n I (n) of they dimemsiott, level n z(n ) of the r dimension,
etc. Once again, little is known about what are good or bad choices
for the permutations, except to avoid linear correlation. An example
in two dimensions is shown below:

Figure 1. An 8-Rook Sampling Design in Two Dmensiorts

There seems to remain an important piece of mrfiished business.
We do not really know very much about what constitutes a good
sampling design versus a bad one. Avoiding linear correlation is
known to be important. Explicit in the two incomplete blcck
designs described above is the property that the sampling pattern is

“good” when projected onto certain lower-dimensional planes or
axes. For example, the N-rook patterns are futly ~putated strstitkd
designs when projected onto arty coordinate axis.

Linear correlation could be avoided by randomly choosing sampling
designs of either Cook’s style or Shirley ’s. Mc$eover, sequential
sampling (i.e., sampling until statistical cordMettce is achieved) is
probably capable of giving satisfactory image quality [LeeS51,
whether the sarnpliig design is good or not. The danger is that
many more samplea might be computed than are necessary.

3. Nonuniform Sampling in Two Dmensions

Before tackling the problem of sampling in D dimensions, it will be
usefrd to review the two-dimensional problem of sampling in the
(x,y) dimensions. This is the problem in whined-style ray txacing.
Typically, the image is “supersarnpled” at a high rate (by casting
rays), and then filtered and resampled to a lower rate to produce the
pixels of a digittd image. The filter may be an average over the
pixel area, or it may be a more sophisticated low-pass filter. The
process of sampling is represented mathematically by multiplication
of the image signal with delta-function pulses, as diagramed below

——

‘1~~ I
supersample pixel-rate

pulses pulses

Figure 2. Convemion of Ray-Casting Samples into Pixels

The reconstruction filter interpolates samples to recreate a continu-
ous image. The low-pass filter makes sure that image is bandlim-
ited so sliasing witl not resutt when it is reaampled at the pixel rate.
These two falters are uaditiomdly combined into one, but when
supersarnphng is nonuniform, it is often the case that reconstruction
and low-pass filtering are dktinctly separate stages [Mitchel187,
Painter89].

If the supersamplmg pattern is nonuniform, and its spectrum has
certain characteristics, the sampling error (or alksing) will take the
form of random noise at high frequencies. llda is desirable for two
reasons. If noise is concett@ated in the high frequencies, more of it
will be attenuated by the low-pass filter pictured in Figure 2.
Secondly, randomness and high frequency both help to make the
noise less perceptible to a human observer.

This can be understood by looking at the sampling process in the
frequestcy domain. Let ~(x,y) represent the continuous image,
S(X,y) represents the sarrtplig pattern (delta functions), and let
r(x ,y) be the combined reconstruction/low-pass fflter. F, S, and R
will represent the corresponding spectsa. In the spatiat domain, the
sampling and filtering process is expressed by

i(x,y) = r(x,y)*[f(x,y) .S(x,y)] (4)

And in the frequency domain:

I(roX,toY) = R(@,,rDY)-[~(rO., WY) *Mroz.@Y)l (5)

where. and * represent multiplication and convolution respectively.

The reconstruction fdtcr is described above as a linear low-pass
filter, which is ideal for uniform samples but cart give a distotted
reconstmction of nonuniform samples. Nonuniform reconstruction
for images is not perfectly understc@ but in practice, ttordinear or
space-wuying falters (which are not representable by a convolution)
give better results ~ipp&S5, Mitchel187, Marvasti87]. The result is
still some type of low-pass filter (i.e., a “smooth” surface interpolat-
ing the sample spikes). When the reconstmcth and low-pass
stages (in F@re 2) are implemented separately, the low-pass stage
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could be a linear filter rainter89]. If the superaampling rate is
much higher than the pixel rate, the linear low-pass stage should
dominate the behavior of the system. We will model the recottatntc-
tion as a linear low-pass filter for the purposes of qualitative
analysis.

The spectrum of the sampling psttem S will be a delta-function
spike at the origin (the DC compent) and some pattern of noise
aurrormding it. The convolution F* S (shown in F@ure 3) of a
image spectrum with the nommiform-aarnpling spectrum gives a
copy of the true image spectrum (the symmetric shape at the center
of the figure) and a halo of noise energy (represented by the scat-
tered dots). The low-pass fiiter R (represented by the dotted box)
attenuates energy outaide its bounds.

-

t
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points already in the pattern. Tlten chose the candidate poim with
the largest closest-point distance, and add it to the pattern. By scal-
ing up the number of random candidate pointa, m proportion to n,
we maintain a constantratio m of cattdidateato patternpoints in the
process. llms we expect the statistics of the pattern (the autocorre-
lation, etc) to alao scale and resnairr similar as the sample density
increases. The high-frequency quality of the pattesn increased with
m.

This is art O(n 2) algorithm, but it is an improvement over the
emtination of the dart-throwing algorithm (whichpoorly defined t

runs until it cannot add new santplea). The spx.d was improved
dramatically by using grid methods for the nearest-neighbor cakula-
tion. This point process is not strictly harckdbk, because it is possi-
ble (although unlikely) for samples to lie very close together. How-
ever, the resulting patternsare excellent if m is not too small. TYte
following figure shows some snapshots from this process, using
m=10
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Figure 4. Sequential Generation of High-Frequency Samples

Figure 3. Spectrum of Nonuniformly Sampled Image

tf the spectrum of the sampling pattern has energy concentrated in
high frequencies, then the halo of noise will be pushed farther out
from the origin, and more of it will be outside of the paas band of
the filter. The best krtown patterns having this high-frequency
characteristic are the Poisson-Disk stochastic point processes.
These patterns are random, but include a constraint that no two
points can be closer than some miniitrm distance (as if each point
was surrounded by a hard disk) [Ripley77], The spectral
consequences of this sampling pattern were first investigated by
Yellott, who found this arrangement in the photoreceptors of
monkey retinas [Yellott83].

More commonly used are patterns based on jirter processes. These
are formed by randomly perturbing the points in a perimiic uniform
lattice. Jitter samptirrg contains more Iow-tlequency energy m its
spectrum than Poiasondisk patterns, and images produced with it
have a more grainy appearance at low sampling rates ~tchel187].
However, jitter sampling is easy to generate, and straightforward
adaptive-sampling schemes exist for generating jitter samples at
variable density [Dipp6t35,Ccak86, Kajiya86, Pairtter89]. Smne of
these methods could atso be described as stratified sampling.

4. Sequential Poisson-D~k Sampting

Poissondiak samples are typicatly generated by a “dart-throwing”
atgorithm which is computationally expensive and which makes it
diff’cult to control the ful density of samples (one initially choaes
the hard-disk diameter, not the desired sample density) ~ipp685,
Mitchel187].

With the following new algorithm, it is possible to generate good
high-frequency sampling patterns with sequentially increasing dett-
sity. Begin by choosing the fwt sample at random in a region. To
add the (n + 1)* sample, generate mn uniformly distributed ran-
dom candidate points (where m is a constant parameter). For each
of these random points, compute the distance to the closest of the n

It is sometimes useful to perform this algorithm with wrap-around
boundary conditions, so the psttern can be replicated periodicatty
over the plane (with much longer pericd than the pixel rate, of
course). The algorithm can be extended to higher dimensions, and it
could also be used to generate isotropic high-frequency sampting
patterna on ttre surface of a sphere. That may be useful because area
light sources and gtoasy reflections require sampling solid angles.
The alternative of stratitkd sampling of latitu& and longitude is not
isotropic because strata near the pde are very different in ahape than
equatorial strata. The concept of choosing the best samplea from
random candklates will be used again in the algorithms applied to
distribution ray tracing,

By “hard disk we usuatly mean a circutar region of avoidance
around each sample. By using an ellipse or other shape, the
s~m of ttM pattern can be made anisolropic in some fashion.
The human visual sensitivity extenda higher into vertical and
horizontal frequencies ttrarrit doea into diagonal frequencies, so a
Poissorrdiamond pattern might be better than Poisson-disk.
Bcutouch et af support this idea in Ureirexpximents with uniform
qrdrrcrmx sampling [Bouatoucb91]. This is an issue that could be
studied further.

S. Motion Blur and Spatiotemporal Sampling

If two-dimensional sampling can push noise into high frequencies,
can the same effect be obtained while sampling the extra parameters
of dkaribution ray tracing? Let us be@rtby considering motion blur
effects, where a single extra parameterr is added. ‘tltis is not an
obvious three-dirrremsionalgenesaIixationof the problem of the pre-
vious swtion. ~’ (x,y; t) is sampled in three dimensions,but we are
stitl concerned with the resulting sampling noise in the two-
dinrensiorralimage i(x,y).

To derive the spectrum of i(x,y), let ~,(x,y,r) =
~’(x,y; r) .s(x,y,t) be the sampled mrdtiparameter image function,
whese s(x,y,r) is a distribution of delta furrtiorts in spac@ittte.
The sampled image function is low-pass filtered spatially with
r(x, y), and integrated over an exposure-time itrtervat for motion
blur

I

i(x,y) = r(x,y)* ~f. (x,Y, r) dt (6)
o
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The spectrum is a littfe easier to derive if we replace the integration
over a time itttetvat with the equivalent operations of convolution
with a box function in r followed by sampling one slice through t.
Then using the Convolution Theorem, we fmd the spectxum of
i(x,y) to bet

.

I(fJx,rDy) = R(cox,@Y) ~ Sinc(w,/2x)F.(@x. mY,@,)d@, (7)
-“

The important difference between the expression for the static-
itnage spectrum (5) and the spectrum of the motion-blurred image
(7) is the integration over 0,, This means tbe three-difnertaiorutI
spectrum (at least, the portion passed by the R and Nnc filters) will
be projectedonto the spatiaf (fox ,roY) ptane, Ideally, we woutd tike
the noisy part of this spectrum to be pushed out of a cylirtdricat
region around the ro, axis, so its projection wiU contain onty the
highest possible spatial noise frequencies.

Figure 5. Cylinders of Medium and Low Spatial Frequencies

Ttds suggests that the best general santpfing pattern will be one with
little power in the low-spatial-frequency region around the O, axis.
Figure 5 depicts the spectrum of the sampling pattern with cylirrdri-
cal regions around the rot axis enclosing spatial frequencies below
some brmdtimit. The wide cytinder on the left contains frequencies
up to some medium vafue, and the cytinder on the right represents a
lower bandlimit. We would like these cylinders to be as vacant of
power as possible. In fact, the practicat requirement is to have the
power within each cylinder be concentrated at the ftigheat possible
frequencies. It is fdso important to give the highest priority to
removing the lowest spatial frequencies, so we require the power in
the right-hand cylinder to be concentrated at higher temporal fre-
quencies than in the left-hand cylinder.

/
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Figure 6. Margittaf Distributionsof %rnples in Space and Time

These conditions in the frequency domain imply some conditions on
the arrangement of samplea in space and time. ‘l’he two grapha in
F@ure 6 illustrate situations corresponding to the spectra in F@re
5. They show the projection of samples onto the spatiaf plane (dots)
and onto the time axis (tick marks). We are not yet certain where

t ‘flrisactuatlycorrespondsto the integraticmof timefrom-X to %. A
phase-shiftfwtorcoutdbeaddedtoreflectintegrationfrmrOto 1.
sine(x) = sin(rrx)lrrx.

Utese samples shoutd be in spacdtinte, but we will be able to give
conditiom on their projections into apace and time.

If there is no movement in a region of the image, then onty the apa-
tiat projection of the pattern is importan~ so we could begin by con-
straining it to form an optimal distribution, like Poissorxlisk.

We are interested in the power contained within cylinders of spatial
tkequextcies, in Figure 5, and in the temporal-frequency distribution
of that power. Imagine that we have convolved the spectnutt with a
cylinder and sampled the reardt on the 0)1axis (this is equivafenf to
averaging ova apatiaf frequencies inside the cylinders). ‘llmt opera-
tion cormponds approximately to selecting the samples within a
cylindrical region of space, and considering their dme distribution.
The ttarmwer cylinder of frequerwies in Figure 5 corresponds to a
wider region of space in F@rre 6. The temporal distribution of
samples, shown in FQure 6, represent one-dimensional patterns of
the highest possible ihquertcy (such as Poisson-rod distributions).

Therefore, the desired propmty of space/time sampling patterns is
that in any cylindrical region of space, the dhibution of samples in
dme witt be a high-frequency pattern. Aft interesting consequence
of this is that samples which are adjacent in space ahotdd differ
greatty in time or other parameter coordinates. This is quite dif-
ferent from the most obvious tbreedirnensional anatog of Poiason-
disk sampling. A Poisson-sphere point distribution woufd not
necessarily have this property of high-frequency time distribution.

6. A Scanning Sample-Generation Atgorithm

A simple scanning algorithm is one possible way to generate satn-
pliig patterns which approximate the conditions described in the
previous section. Begin by stratifying the x and y dimensions into a
mesh of subsqrrares, assuming that one jittered sample is contained
in each. The goal is to assign each sample a vatue of the parameter
t. This is done in scatming order, from left to right, and top to bot-
tom.

EEEl
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F@ue 7. Neighborhood of the Next Unprocessed Subsquare

Figure 7 itluatrates the situation at some point in the scanning pro-
cess. We wish to choose a parameter vatue for the subsquare con-
taining the dot. In the 5 x 5 region surrounding the dot, some
subsquara above and behind (indicated by “P” or “S”) have already
been assigned t values. Catl these the P-cetfs and S-cells (meaning
primary and =ortdary).

We woutd like the newt vatue to tit into a high-frequency Poisson-
rod distribution, as shown in F@rtre 6. In a manner reminiscent of
the sequential Poissottdisk atgorithm of section 4, we generate a set
of primary candidate t vaturM with uniform random distribution in
[0, 1], For example, let us say we generate 100 primary candidates.
The candidate are sorted by their maximum cloaeat distance to the t
vrdues of the P-cells. Distance is dtimed with wrap-around borrn-
dary cotrditions, so the pattern can used periodicatty from frame to
frame.. From the sorted list, we might pick (for example) the 10
with largest max-mitr distance. Any one of these 10 values shoufd
be a good choice to complete a coarse Poisson-rod diatibrttion as
suggested on the left of Figure 6.

The set of 10 vafrres selected above are now considered as secondary
candidates. For each secondary candidate, compute the maximum
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closest distance to the r values of the S-cells, and pick the one with
the largest msx-min distance. This should be a good choice to com-
plete the denser distribution as suggested on the right of Figure 6.
We are trying to meet two constraints, picking 100 primary candi-
dates and evaluating how weff they match the situation on the left of
Figure 6, then selecting 10 secondary candidates to match the condi-
tions on the right.

7. Experiments with Scan-Generated Sampling Patterns

F@ues 8 and 9 demonstrate the use of ttds sampling patternon a
ray-tracedscene containing spinning wheels. F@re 8 was made by
choosing t vatues with a uniform random distribution. Figure 9 uses
the spectrally optimized r values generated by the scanning algo-
rithm. In fact, a 32 x 32 pattern of samples was generated and repli-
cated periodically on the plane. Both image were generated with
just one sample per pixel so the sampling noise cart be seen clearly.
Essentially, we are looking at the raw superaamples~., which would
be passed into the filter stages of F@ure 2 in order to make an
antialiaaed digital image.

Figures 10a and 10b ahow the correapondlng noise spectra (with
lighter shades indicating higher power). These were obtained by
subtracting F@rres 8 and 9 from a reference image (generated with
100 rays per pixel), to create an error image. The discrete Fourier
transform of the error images show a typical “white noise” spectrum
in Figure 10a, corresponding to the random sampling. However,
Figure 10b shows a considerable concentration of power in the
higher frequencies.

Even though the mean square error of F@res 8 and 9 are about the
same, the frequency distribution of power has a large impact on
subjective appearance. A series of rarsdornty-sampled images like
Figure 8 were generated using from 1 to 9 samples per pixel, and
seversf expert observers were asked to select the best comparison
with Figure 9. F@sre 9 was obviously better looking that 1 sample
per pixel and obviously worse than 9. The consensus was that three
or four random time samples psr pixel were required to match the
subjective quality of Figure 9.

Figures 11 and 12 show a similar comparison of the tedutique
applied to depth-of-field effects. F@rsre 11 was generated with
uniformly random vahsea of (a, b ), the parameters controlling the
deflection of primary rays through the camera aperture. F@sre 12
used parameter values generated by the scanning algorithm. The
only difference from scanning generation of t values is the use of a
twodlmensional Euclidean distance for the max-mio distance
selections. Once again, both figures were generated with one ray
per pixel. Figure 11 shows the clumpy pattern of sampling error
characteristic of white noise, and Figure 12 shows the timer structure
of high-frequency ❑oise.

A cnticrd observer may notice, from the point-spread, that the
simulated camera has a square lens. There is no special problem in
simulating a round lens, which should have been done if this were
not a simple experimental ray tracer.

Figures 13 and 14 demonstrate another two-parameter experiment,
using parameter values to perturb the normal vector of a surface and
simulate glossy reflection. F@e 13 uses random perturbations and
Figure 14 uses scan-generated parameters.

These images provide evidence that the condition for optimal
parameter sampling is correct. The acruming sample-generation
iilgori thm should not be thought of as a defrrtitive way to generate
optimal samples, however. It is an ad hoc way to genexate a pattern
with approximates the conditions defined in section 5, but only in a
s x s region, and probably not with perfect isotropy. There is a
great deal of opportunity for experiment and improvement.

8. N-Parameter Sampfing

Suppose an image of the spinning-wheels picture (seen in Figures 8
and 9) is generated with motion blur and afso an area light source,
creating shadows with penumbras. Using assoptimized pattern of r
parameters ensures that the spinning spokes of the wheels are wefl
sampfed as in Figure 9. Using an optimized pattemrof (u, v) param-
eters erwres that the penumbra around the rim of the wheels has
good high-frequency sampling noise. However, in regions where
both distribution ray-tracing effects are combined-in a moving
penumbra-the sampling noise baa a coarser white-noise appear-
ance.

Figure 15. t3-RookSampling Patterns

It is not stilcient to optimize the t and (u ,v) distributions of sam-
ples alone. ‘fhe joint distribution of (r,u ,v) matters. Figure 15
demonstrates this concept. Here, two patterns btb have the same
projected (“marginal”) distributions in u and v (in this case, uniform
periodic). However, the overall joint distributions of the two pat-
terns we very different. Suppose a signal was sampled with the pat-
tern on the right. If the sigrud contains only variations in Useu or
onty in the v dnensions, it may be sampled well enough. But if the
image contains variation along the dmgonal perpendicular to the row
of samples, severe afiaaing might occur. In distribution ray tracing,
a similar situation can occur, and aliasing caused by paor joint dk-
tribution of the parameter samples can be projetted onto the image.

It is also not sufficient to just optimize the joint dktribution of
(t,u,v) withcut considering the marginal distributions of r and
(u,v). The scanning algorithm was used to generate samples in
(r,u,v) with Poisson-sphere joint diatibutions, and this resulted in
relatively poor image quatity. The region of moving penumbra was
much improved, however.

The beat image quatity in the moving-penumbra teat was achieved
by generadng sampling patterns in which both the joint distribution
and the marginal distributions are spectrality optimized. F@ure 16
shows the spinning wheels image, using a sampfing pattern which
combws a joiit diminution of (r ,U,v) which is Poisson-sphere,
and a margitraf distribution of r which is Poisson-rod. This suggests
that as the parameter space becomes higher in dimension, sampliig
patterns must be found which meet the conditions of Figure 6 in a
combination of marginal and joint distributions. This combination
of conditions was met by extending the scanning algorithm to select
a series of primary, secondary, and terdary candidate.

9. Adaptive Sampling

No matter how optimal a supersamplkrg pattern may be, we camot
ignore the computational eftlciency of adaptive sampling. It is often
the case (except in the most complex scenes) that many portions of
artimage cats be sampled at relatively low density. A simple sohr-
tion might be to use a few discrete levels of sampling density. The
two-level sampling rdgorithm described by the author in
[Mitchel187] was very easily adapted to use a fivedimensional
(x,y,r,u,v) periodic pattern of 1024 samples.

In that scheme, an image is sampled at a low base rate. h is a good
idea to make this base rate selectable by the user, and typically one
or a few samples per pixel area are sufficient. The results of the
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base-rate sampling are then used to estimate local bandwidth and
identify regions that require sampling at a higher rate.

Variable sampling rates can be achieved by simply scaling the
stored pattero. If the pattern is optimal in the sense discussed above,
it will only be necessary to scale the pattern in x, y. Aa the sampling
rate per pixel area increases, the rate per parameter dimension
should also increase and the distribution should remain spectrally
optimal, as indicated in Figure 6.

10. Conclusions

Gptirnalnonuniform sampling is a familiar approach to the aliasirrg
problem in Wtdtted’s ray-tracing algorithm. ‘I?& paper takes a fwt
step ia extending this technique to the muhidirnensiomd atgorithnr
of distribution ray traciog. This is nontrivial for two reasons. Fret,
a simpte extension of the stratitM/jitter sarnpting techniques to
higher dimensions requires a number of samples exponential in the
dimension. Secondly, this is not simply the problem of generating a
D-dimensional image, which would be an obvious extension of the
twodlmensiorud theory.

ArI analysis of the sampling problem in distribution ray @acingsug-
gests a critesia for sampling patterns that can force aliasing noise
into higher frequencies. Samples contained in any circular region in
space (on the x,y image plane) should have parameter values which
form a pattern of the highest possible frequency. It appears that in
addition to requiriog the overall joint distribution of parameter
vatues to be high-frequency (e.g., a Poisson-hypcrsphere distribu-
tion), it is important to insure that certain marginal disnibutions are
of the highest frequency (e.g., time values beiig Poisson-rod, (u ,v)
parameters being Poisson-dhk etc.). This problem could be studied
further.

A scanning sample-generation algorithm is proposed, which givea
sampling patterns which locally approximate the opdrnal. This was
good enough to demonstrate the correcmeas of the optimrdity condi-
tion iII a numtw.r of teat images. Further work could be done on
better sample-generation rdgorithrna, perhaps using exhaustive
Monte Carlo search.

Much more diffbdt sampling problesns arise in the current mmst
advamxd rendering algorithms. These probIetns are made explicit
in several recent works [Kajiya86, Heckbert90, Shirley!)O].
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